Quarterly 1 Review #2 Chapter 1.4–1.9, 4.1 Name _

Review the following in preparation for the quarterly. You will be permitted to use a graphing calculator.

- 1. Test on 1.4–1.9
- 2. Quiz 4.1
- 3. Complete the quarterly review below

DO ALL WORK ON A SEPARATE SHEET OF PAPER!!

Use f(x) = 2x-1 for questions #1 & 2.

- 1. Write the function:
 - a. g(x), that is the reflection of f(x) in the y-axis.
 - b. h(x), that is the reflection of f(x) in the x-axis.
- 2. Write the function g(x), that shows a vertical shift of 3 up and a horizontal shift of 5 left for f(x).
- 3. How do you determine if a relation is a function? If a relation is one-to-one?
- 4. If $f(x) = 2x^3 1$, find the inverse and graph both the function and the inverse on the same set of axes.
- 5. Algebraically determine if $f(x) = 3x^4 5x^2 + 1$ is even, odd, or neither and identify any symmetry.
- 6. If $f(x) = 2x^2 3$ and g(x) = x + 5, find: a. $(f \circ g)(-1)$ b. $(g \circ f)(x)$, state the domain c. $\left(\frac{f}{g}\right)(x)$, state the domain d. (f - g)(x)

7. Determine the interval(s) over which the function $f(x) = 3(x-4)^2 + 6$ is decreasing.

8. Identify the domain of each function:

a.
$$f(x) = x^2 + 2x + 4$$

b. $f(x) = \sqrt{x+6} - 2$
c. $h(x) = \frac{3x}{x-5}$
d. $k(x) = \frac{2}{\sqrt{x+6}}$

- 9. Find the zeros of the function: a. $f(x) = 4x^3 - 24x^2 - x + 6$ b. $f(x) = 2x^2 - 7x - 30$
- 10. Determine whether the function is even, odd, or neither and describe the symmetry that exists, if any. a. $g(x) = x^2 - 4x + 5$ b. $f(x) = x^3 - 5x$ c. $j(x) = x^4 - 5x^2 - 3$
- 11. If $f(x) = 3\sqrt{2x}$ and g(x) = x 1, find g(f(x)).
- 12. Describe all of the transformations from the parent function for the following function:

$$d(x) = -3(-x-4)^2 - 8$$

13.	Analyze the function pictured. Include the following: a. Domain & Range:
	b. Inc/dec/constant intervals:
	c. Find the zero(s). State your answer(s) as ordered pairs. $(-4,0)$ (00) (5,0)
	d. Find the relative minimum(s)/maximum(s). (-2.5,-19.4)
14.	Determine the quadrant in which the terminal side of an angle of this size lies.
	$\frac{5\pi}{4}$ $\frac{\pi}{2}$ $\frac{9\pi}{4}$ -222°
15.	List one positive and one negative coterminal angle for each of the following angles:
	108° 216° $\frac{5\pi}{3}$ -340°
16.	Determine supplementary angles for:
	$\theta = \frac{3\pi}{4} \qquad \qquad \theta = 230^{\circ} \qquad \qquad \theta = 15^{\circ} \qquad \qquad \theta = \frac{5\pi}{4} \qquad \qquad$
17.	Determine complementary angles for: $\theta = \frac{3\pi}{5}$ $\theta = 21^{\circ}$ $\theta = 37^{\circ}$
18.	Convert the following angles to degrees: $\theta = \frac{3\pi}{5}$ $\theta = \frac{3\pi}{4}$
19.	Convert to (degree) decimal form. Round to 3 decimal places: 23° 17' 29"14° 14' 14"
20.	Convert the angle measures from degrees to radians or radians to degrees – round to 3 decimal places.
	485° $\frac{5\pi}{3}$ $\frac{7\pi}{6}$ -33° $15'$
21.	What is the central angle θ of a circle with radius 7.5 inches that subtends an arc of 22 inches?
22.	What is the arc length intercepted by a central angle of 20° with a radius of 8 cm?
23.	What is the area of a sector of radius 10 inches and central angle of $\theta = 25^{\circ}$?