Review the following in preparation for the quarterly. You will be permitted to use a graphing calculator.

1. Test on 1.4-1.9
2. Quiz 4.1
3. Complete the quarterly review below

DO ALL WORK ON A SEPARATE SHEET OF PAPER!!

Use $f(x)=2 x-1$ for questions \#1 \& 2 .

1. Write the function:
a. $g(x)$, that is the reflection of $f(x)$ in the y-axis.
b. $h(x)$, that is the reflection of $f(x)$ in the x-axis.
2. Write the function $g(x)$, that shows a vertical shift of 3 up and a horizontal shift of 5 left for $f(x)$.
3. How do you determine if a relation is a function? If a relation is one-to-one?
4. If $f(x)=2 x^{3}-1$, find the inverse and graph both the function and the inverse on the same set of axes.
5. Algebraically determine if $f(x)=3 x^{4}-5 x^{2}+1$ is even, odd, or neither and identify any symmetry.
6. If $f(x)=2 x^{2}-3$ and $g(x)=x+5$, find:
a. $(f \circ g)(-1)$
b. $(g \circ f)(x)$, state the domain
c. $\left(\frac{f}{g}\right)(x)$, state the domain
d. $(f-g)(x)$
7. Determine the interval(s) over which the function $f(x)=3(x-4)^{2}+6$ is decreasing.
8. Identify the domain of each function:
a. $\quad f(x)=x^{2}+2 x+4$
b. $f(x)=\sqrt{x+6}-2$
c. $\quad h(x)=\frac{3 x}{x-5}$
d. $k(x)=\frac{2}{\sqrt{x+6}}$
9. Find the zeros of the function:
a. $\quad f(x)=4 x^{3}-24 x^{2}-x+6$
b. $f(x)=2 x^{2}-7 x-30$
10. Determine whether the function is even, odd, or neither and describe the symmetry that exists, if any.
a. $g(x)=x^{2}-4 x+5$
b. $f(x)=x^{3}-5 x$
c. $j(x)=x^{4}-5 x^{2}-3$
11. If $f(x)=3 \sqrt{2 x}$ and $g(x)=x-1$, find $g(f(x))$.
12. Describe all of the transformations from the parent function for the following function:

$$
d(x)=-3(-x-4)^{2}-8
$$

13. Analyze the function pictured. Include the following:
a. Domain \& Range:
b. Inc/dec/constant intervals:
c. Find the zero(s). State your answer(s) as ordered pairs.
d. Find the relative minimum $(\mathrm{s}) /$ maximum (s).

14. Determine the quadrant in which the terminal side of an angle of this size lies.

$$
\frac{5 \pi}{4}-\frac{\pi}{2}-\quad \frac{9 \pi}{4} \quad-222^{\circ}=
$$

15. List one positive and one negative coterminal angle for each of the following angles:

$$
108^{\circ} \longrightarrow 216^{\circ} \longrightarrow \quad \frac{5 \pi}{3} \longrightarrow 340^{\circ}
$$

16. Determine supplementary angles for:

$$
\theta=\frac{3 \pi}{4} \longrightarrow \theta=230^{\circ} \quad \theta=15^{\circ} \quad \theta=\frac{5 \pi}{4}
$$

\qquad
17. Determine complementary angles for: $\theta=\frac{3 \pi}{5}$ \qquad $\theta=37^{\circ}$ \qquad
18. Convert the following angles to degrees: $\theta=\frac{3 \pi}{5} \ldots \quad \theta=\frac{3 \pi}{4}$ \qquad
19. Convert to (degree) decimal form. Round to 3 decimal places: $23^{\circ} 17^{\prime} 29^{\prime \prime}$ \qquad $-14^{\circ} 14^{\prime} 14^{\prime \prime}$ \qquad
20. Convert the angle measures from degrees to radians or radians to degrees - round to 3 decimal places. $485^{\circ} \longrightarrow \quad \frac{5 \pi}{3} \longrightarrow \quad \frac{7 \pi}{6} \longrightarrow-33^{\circ} 15^{\prime}$
21. What is the central angle θ of a circle with radius 7.5 inches that subtends an arc of 22 inches?
22. What is the arc length intercepted by a central angle of 20° with a radius of 8 cm ?
23. What is the area of a sector of radius 10 inches and central angle of $\theta=25^{\circ}$? \qquad

