Precalculus Quarterly 1.4-1.9, 4.1
Quarter 1 Review \#1
Do Now:
Given $\theta=\frac{2 \pi}{3}$, answer the following using the SAME unit of measure:
b) Find the complement and supplement (if poss.). the quadrant.

Given $\theta=\frac{2 \pi}{3}$, answer the following using the SAME
a) Sketch the angle in Standard Position. Identify
Name: \qquad
Date: \qquad Period: \qquad
c) Find a positive and negative coterminal angle
d) Convert to degree measure.
1.Determine which of the following angles is complementary to $\theta=\frac{\pi}{6}$.
a) $\theta=\frac{5 \pi}{6}$
b) $\theta=\frac{13 \pi}{6}$
c) $\theta=\frac{\pi}{3}$
d) $\theta=\frac{11 \pi}{6}$
e) None of these
2.The central angle θ of a circle with radius 16 inches subtends (cuts) an arc 19.36 inches. Find θ.
a) 47.3519°
b) 1.21°
c) 69.3279°
d) 0.8264°
e) None of these
3. Determine which of the following angles is supplementary to $\theta=\frac{\pi}{12}$.
a) $\theta=\frac{5 \pi}{12}$
b) $\theta=\frac{11 \pi}{12}$
c) $\theta=\frac{13 \pi}{12}$
d) $\theta=\frac{25 \pi}{12}$
e) None of these
4. Find the area of the sector intercepted by a central angle of 130° and with a radius of 9 in .
a) $10.210 \mathrm{in}^{2}$
b) $20.420 \mathrm{in}^{2}$
c) $91.892 \mathrm{in}^{2}$
d) $585 \mathrm{in}^{2}$
e) None of these
5. Convert $\frac{5 \pi}{6}$ to degrees
a) 47.746°
b) 68.755°
c) 150°
d) 216°
e) None of these
6. For a circle with radius $=5$ inches, what is the length of the arc intercepted by 45° ?
a) 1.963 in
b) 3.927 in
c) 9.817 in
d) 225 in
e) None of these
7. Find an angle that is NOT coterminal to an angle with $\theta=-250^{\circ}$.
a) -970°
b) 470°
c) 110°
d) -70°
e) None of these
8. Convert to radians: -225°.
a) $\frac{5 \pi}{4}$
b) -1.25
c) 3.927°
d) $-\frac{5 \pi}{4}$
e) None of these
9. Convert to $D^{\circ} M^{\prime} S^{\prime \prime}: 20.876^{\circ}$
a) $20^{\circ} 52^{\prime} 36^{\prime \prime}$
b) $0^{\circ} 21^{\prime} 52^{\prime \prime}$
c) $20^{\circ} 52^{\prime} 34^{\prime \prime}$
d) $21^{\circ} 51^{\prime} 68^{\prime \prime}$
e) None of these
10. Which of the following functions DOES NOT have an inverse?
a) $f(x)=2 x-5$
b) $f(x)=x^{3}+9$
c) $f(x)=2|x+1|$
d) $f(x)=-2 \sqrt{x+7}$
e) None of these
11. Find $(h \circ g)(x)$ and the DOMAIN of $(h \circ g)(x)$ if $g(x)=\sqrt{x+9}$ and $h(x)=x^{2}-8$;
a) $\begin{aligned} & x+1 ; \\ & D:(-\infty, \infty)\end{aligned}$
b) $\left(x^{2}-8\right) \sqrt{x+9}$;
c) $\left(x^{2}-8\right) \sqrt{x+9}$;
d) $\begin{aligned} & x+1 ; \\ & D:[-9, \infty)\end{aligned}$
e) None of these
12. For the function $f(x)=x^{2}-3, x \geq 0$:
a. Graph it on the grid provided.
b. Explain how you know $f(x)$ has an inverse.
c. Find the equation of the inverse function, then graph.

d. Identify the following:

Domain of $f(x)$ \qquad
Domain of $f^{-1}(x)$ \qquad

Range of $f(x)$ \qquad
Range of $f^{-1}(x)$ \qquad

