Precalculus - MP1 Quarterly Review #3

Date		
-		

Name _____

Period _____

This will **NOT** be collected and graded tomorrow! Study for your quarterly Sections 1.4 - 1.9, and 4.1.

- 1. Given $f(x) = x^2 2x + 1$, find f(x-3).
- 2. Find the domain of $h(x) = \frac{\sqrt{x}}{x-6}$
- 3. Find the domain of $g(x) = \sqrt{36+2x}$.
- 4. Sketch the graph of $f(x) = -x^3 + 2$. Give the domain and range in interval notation.

5. Use the graph of h(x) = |x| to graph the following: (a) h(x+4) (b) h(-x)+1

6. Given f(x) = 3x + 7 and $g(x) = 2x^2 - 5$, find the following: (a) (g - f)(x) (b) $(f \cdot g)(x)$

7. Given $r(x) = x^2 - 2x + 16$ and s(x) = 2x + 3, find r(s(x)).

8. Given $f(x) = x^3 + 7$, find $f^{-1}(x)$.

9. Determine the intervals over which the function $f(x) = (x-2)^2 + 3$ is increasing, decreasing, or constant.

- 10. Determine whether the following functions are even, odd, or neither: (a) $g(x) = x^5 + 4x - 7$ (b) $h(x) = 3x^4 - 21x^2$
- 11. Verify algebraically, that $f(x) = 3x^5 + 2$ and $g(x) = \sqrt[5]{\frac{x-2}{3}}$ are inverse functions.

- 12. True/False: if a function has an inverse then it must pass both the vertical and horizontal line tests.
- 13. Express 350° in radian measure.
- 14. Find one positive and one negative coterminal angle to $\frac{2\pi}{9}$.
- 15. Convert 135°14'12" to decimal form.