\qquad
Name \qquad Period \qquad
This will NOT be collected and graded tomorrow! Study for your quarterly Sections 1.4 - 1.9, and 4.1.

1. Given $f(x)=x^{2}-2 x+1$, find $f(x-3)$.
2. Find the domain of $h(x)=\frac{\sqrt{x}}{x-6}$
3. Find the domain of $g(x)=\sqrt{36+2 x}$.
4. Sketch the graph of $f(x)=-x^{3}+2$. Give the domain and range in interval notation.
5. Use the graph of $h(x)=|x|$ to graph the following:
(a) $h(x+4)$
(b) $h(-x)+1$
6. Given $f(x)=3 x+7$ and $g(x)=2 x^{2}-5$, find the following:
(a) $(g-f)(x)$
(b) $(f \cdot g)(x)$
7. Given $r(x)=x^{2}-2 x+16$ and $s(x)=2 x+3$, find $r(s(x))$.
8. Given $f(x)=x^{3}+7$, find $f^{-1}(x)$.
9. Determine the intervals over which the function $f(x)=(x-2)^{2}+3$ is increasing, decreasing, or constant.
10. Determine whether the following functions are even, odd, or neither:
(a) $g(x)=x^{5}+4 x-7$
(b) $h(x)=3 x^{4}-21 x^{2}$
11. Verify algebraically, that $f(x)=3 x^{5}+2$ and $g(x)=\sqrt[5]{\frac{x-2}{3}}$ are inverse functions.
12. True/False: if a function has an inverse then it must pass both the vertical and horizontal line tests.
13. Express 350° in radian measure.
14. Find one positive and one negative coterminal angle to $\frac{2 \pi}{9}$.
15. Convert $135^{\circ} 14^{\prime} 12^{\prime \prime}$ to decimal form.
