1. Find
$$z_1 \cdot z_2$$
 if $z_1 = 3\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$ and $z_2 = 4\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$

2. Find $\frac{4i}{1-\sqrt{3}i}$ in a) trig form

and check in b) standard form

- 3. Use DeMoivre's theorem to find $(\sqrt{3}-i)^7$. Give your answer in both trigonometric and standard form.
- 4. Given the following information where u is in QII and v is in QIV, find the exact value of each trig function after drawing a diagram: a. $\sin 2u$ $\sin u = \frac{8}{17}$, $\cos v = \frac{12}{13}$ a. $\sin 2u$ b. $\cos \frac{u}{2}$ c. $\tan(u+v)$ d. $\cos(u-v)$ e. $\tan \frac{u}{2}$

$$\sin u = \frac{8}{17},$$

$$\cos v = \frac{12}{13}$$

5. Solve $2\sin 4x = \sqrt{2}$ giving a) all solutions and b) all solutions in the interval $[0, 2\pi)$

- 6. Solve $x^2 6x + 9 < 16$. Graph your solution and write your answer in interval notation.
- 7. Solve: $\frac{x}{x-3} \ge \frac{12}{x}$. Graph your solution and write your answer in interval notation.

a.
$$\log_4 16 = 2$$

b.
$$\ln 3 \approx 1.099$$
 c. $\ln 1 = 0$

c.
$$\ln 1 = 0$$

a.
$$e^4 \approx 54.6$$

b.
$$e^{-1} \approx .37$$
 c. $e^{0} = 1$

c.
$$e^0 = 1$$

a.
$$\ln(5x+3)$$

b.
$$\ln(2x^2 - 5x - 3)$$

a.
$$e^{\ln(x+2)} - \ln e + e^{\ln 5}$$

11. Simplify: a.
$$e^{\ln(x+2)} - \ln e + e^{\ln 5x}$$
 b. $\ln 1 - 2\ln x + \ln(x+1)$ c. $\ln e^{5\pi} + \ln 1 + \pi \ln e$

c.
$$\ln e^{5\pi} + \ln 1 + \pi \ln e$$

12. Write in terms of sums, differences and/or multiples of single logarithms:

a.
$$\log_e \left(\frac{\sqrt{xy^2}}{z^3} \right)$$

b.
$$\ln\left(\frac{\sqrt[3]{a}}{b^2c^5}\right)$$

13. Write an equivalent expression with positive exponents:

a.
$$e^{-x+1}$$

b.
$$e^{5x-3}$$

c.
$$e^{-2x-4}$$

14. The graphs of
$$y = e^{-2x}$$
 and $y = e^{3x}$ intersect at what point?

15. Graph
$$f(x) = -\ln(x+3) - 1$$
. Describe transformations and find domain, range, and asymptote(s).

Transformations:

Domain:

Range:

Asymptote(s):

16. State the domain, identify all intercepts, find and plot all asymptotes, and find and plot additional points as needed to graph the following function:

$$f(x) = \frac{3x - 1}{x^2 - 4}$$

Domain:

x–int:

y-int:

VA:

HA/Slant:

