\qquad
Name \qquad
\qquad

1. Sketch the graph of $f(x)=\frac{x-1}{2 x}$ labeling all asymptotes, zeros, intercepts (etc.)
2. Find ALL asymptotes of $f(x)=\frac{4 x^{2}-2 x+7}{x-1}$
3. Solve for $x: \quad 3^{x-1}=\frac{1}{81}$
4. Rewrite the following with a positive exponent and draw a sketch: $f(x)=\left(\frac{1}{4}\right)^{-x}$.
5. Write in logarithmic form: $\mathrm{e}^{-2}=1.35$
6. Write as a single logarithm: $5 \ln x-\frac{1}{2} \ln y+6 \ln z$
7. Find the point of intersection:
a) $f(x)=e^{-2 x}$ and $g(x)=e^{\ln 10}$
b) $g(x)=\ln \left(2 x^{2}-5\right)$ and $h(x)=\ln (-9 x)$
8. Use the graph of $f(x)=\log _{e} x$ to describe the transformations that yield the graph of $g(x)=-\log _{e}(x-2)+1$, then graph $g(x)$. Define domain, range, and asymptote.
9. Give the domain of $f(x)=\ln \left(3 x^{2}-5 x-2\right)$.
10. Solve: $x^{5}-5 x^{3}+4 x=0$ by factoring.
(Note that this is the same question as "Find the zeros of $\mathrm{f}(\mathrm{x})=x^{5}-5 x^{3}+4 x^{\prime \prime}$)
11. By completing the square (put into $y=a(x-h)^{2}+k$), sketch the graph of $f(x)=3 x^{2}-12 x+4$ and identify the vertex.
12. Give the solution set for:
a) $\frac{x+5}{x^{2}} \leq 0$
b) $\frac{x}{x-2} \geq \frac{8}{x}$
