Name: \qquad
\qquad Period: \qquad
Precalculus Section 6.5 Review

Formulas to know:

$z=a+b i \quad$ (standard form of complex number)
$z=r(\cos \theta+i \sin \theta)$ (trigonometric form of complex number)
$r=\sqrt{a^{2}+b^{2}} \quad \tan \theta=\frac{b}{a}$
$z_{1} z_{2}=r_{1} r_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right)$
$\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left(\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right)$
$z^{n}=r^{n}(\cos n \theta+i \sin n \theta)$

Objective: To review operations with complex numbers in trigonometric form.

DO NOW:

1. Write in trigonometric form:
a. $z_{1}=5 i$
b. $z_{2}=-3 \sqrt{3}-3 i$
c. $z_{3}=4+7 i$
2. Find $\left(z_{2}\right)^{8}$. Write your answer in trigonometric form.

Class practice problems:

1. Graph the complex number and find the trigonometric form: $z=1+3 i$
2. Graph the complex number and find the standard form: $z=3\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)$
3. Write in trig form, perform the indicated operation, then check in standard form: $(\sqrt{3}+i)(1+i)$
4. Use DeMoivre's theorem to find $(2+2 i)^{6}$
