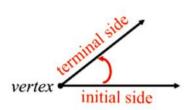
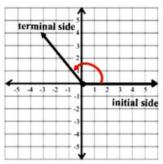
Wednesday, October 31, 2018 6:38 PM

Precalculus - 4.1 Intro to Unit Circle Notes

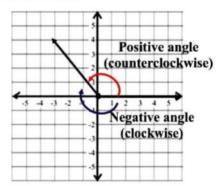
An *angle* is determined by rotating a ray about its endpoint. The starting position of the ray is the <u>initial side</u> of the angle, and the position after rotation is the <u>terminal side</u>. The endpoint of the ray is the *vertex* of the angle. **Note:** It is important to draw an arc with an arrow to indicate the direction of rotation.



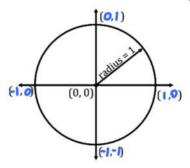


An angle is in **standard position** if the initial side of an angle coincides with the *x*-axis (is on the *x*-axis).

<u>Positive angles</u> are generated by *counterclockwise* rotation, and <u>negative angles</u> by *clockwise* rotation as indicated by the directional arc and arrow.



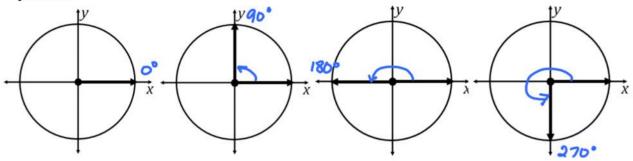
A Unit Circle - A unit circle is a circle whose center is at the origin and whose radius is 1 unit.



Ex. 1: Can you name 4 points on the unit circle?

A Quadrantal Angle has its terminal side on either the x or y-axis when drawn in standard position.

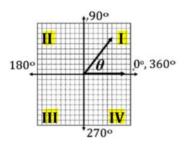
Ex. 2: List 5 angle measures for quadrantal angles as you rotate counterclockwise from standard position.



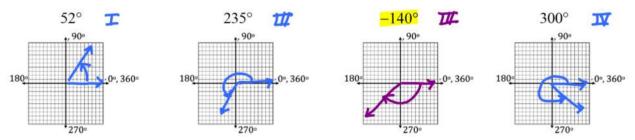
Quadrants – The Greek letter **theta** (θ) is used to represent angles.

The phrase "the terminal side of θ lies in quadrant..." is often abbreviated by simply saying that " θ lies in quadrant...". Angle θ (pictured to the right) lies in quadrant I.

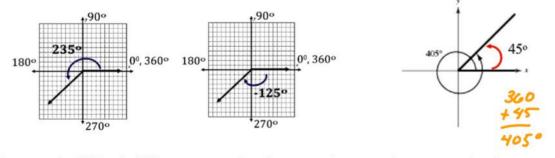
The terminal sides of quadrantal angles $(0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}, 360^{\circ}, ...)$ do not lie within quadrants.



Ex. 3: Determine in which quadrant each angle lies by sketching the angle in standard position.



<u>Coterminal Angles</u> are angles that have the <u>same initial and terminal sides</u>, but may differ by the direction and number of rotations to get to their final position.



For example, 235° and -125° are coterminal angles. 45° and 405° are also coterminal angles.

To find **coterminal angles** add or subtract multiples of 360° (one revolution), as demonstrated in the following example: (Note that a given angle θ has infinitely many coterminal angles.)

For the positive angle 30° , add or subtract multiples of 360° to find coterminal angles.

$$30^{\circ} - 360^{\circ} = -330^{\circ}$$

$$30^{\circ} + 360^{\circ} = 390^{\circ}$$

$$30^{\circ} - 360^{\circ} = -330^{\circ}$$
 $30^{\circ} + 360^{\circ} = 390^{\circ}$ $30^{\circ} + 360^{\circ}(2) = 750^{\circ}$

 30° , -330° , 390° and 750° are all coterminal angles.

Ex. 4: Determine two coterminal angles (one positive and one negative) for each angle.

a)
$$\theta = 215^{\circ}$$

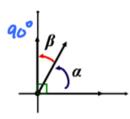
c)
$$\theta = 108^{\circ}$$

d)
$$\theta = -410^{\circ}$$

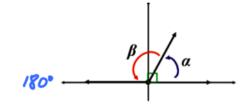
$$108^{\circ} + 360^{\circ} = 468^{\circ} \qquad -410^{\circ} + 360^{\circ} = -50^{\circ}$$

$$108^{\circ} - 366^{\circ} = -252^{\circ} \qquad -410^{\circ} + (2)360^{\circ} = 310^{\circ} \qquad ADD$$

Two positive angles α (Greek Letter Alpha) and β (Greek Letter Beta) are complementary (complements of each other) if their sum is 90° . Two positive angles are supplementary (supplements of each other) if their sum is 180° . It is also possible for an angle to NOT have a complement or supplement (β does not have a complement in the diagram below right).



Complementary Angles



Supplementary Angles

Ex. 5: Find (if possible) the complement and supplement of each angle. If it is not possible, explain why.

Homework: Section 4.1, #31, 34, 35-37, 39-45 odd

In Exercises 31–34, determine the quadrant in which each angle lies.

- S 31. (a) 130°
- (b) 285°
- 32. (a) 8.3°
- (b) 257° 30′
- S 33. (a) -132° 50′
- (b) -336°
- **34.** (a) -260°
- (b) -3.4°

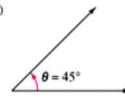
In Exercises 35-38, sketch each angle in standard position.

- S 35. (a) 30°
- (b) 150°
- 36. (a) -270°
- (b) -120°

- S 37. (a) 405°
- (b) 480°
- 38. (a) -750°
- (b) -600°

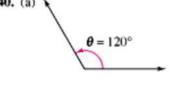
In Exercises 39–42, determine two coterminal angles (one positive and one negative) for each angle. Give your answers in degrees.

S 39. (a)

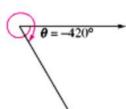


(b) $\theta = -36^{\circ}$

40. (a)



(b)



- **S** 41. (a) $\theta = 240^{\circ}$
- (b) $\theta = -180^{\circ}$
- **42.** (a) $\theta = -420^{\circ}$
- (b) $\theta = 230^{\circ}$

In Exercises 43-46, find (if possible) the complement and supplement of each angle.

- S 43. (a) 18°
- (b) 115°
- 44. (a) 3°
- (b) 64°

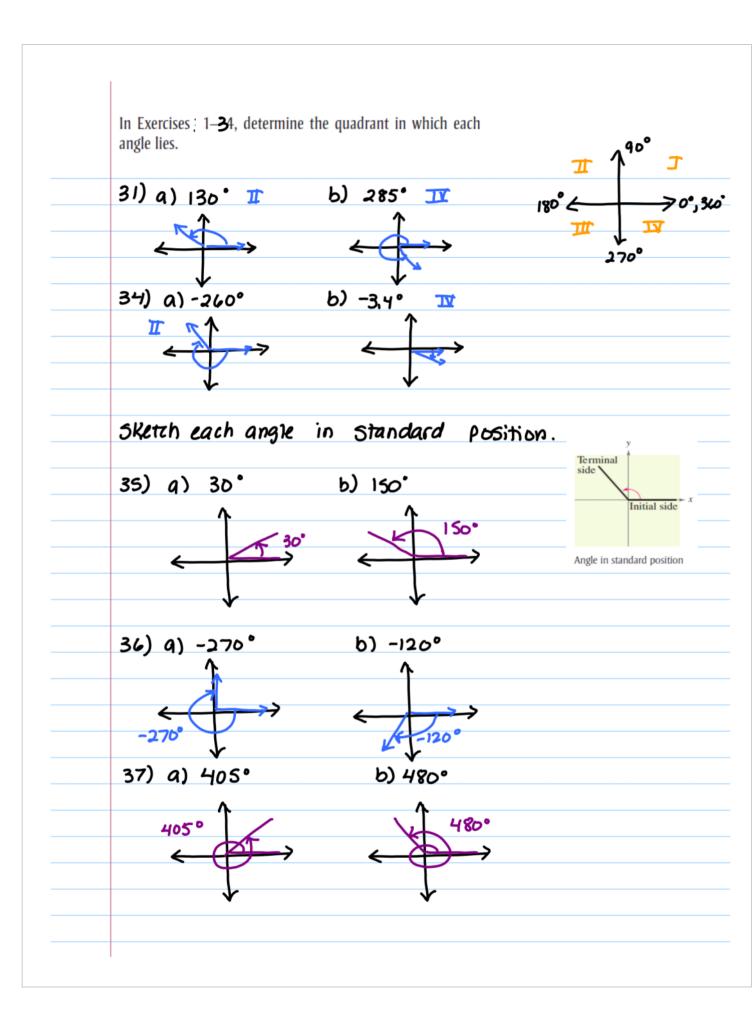
- S 45. (a) 79°
- (b) 150°
- 46. (a) 130°
- (b) 170°

omit

In Exercises 47–50, rewrite each angle in radian measure as a multiple of π . (Do not use a calculator.)

- S 47. (a) 30°
- (b) 150°
- 48. (a) 315°
- (b) 120°

- S 49. (a) -20°
 - (b) -240°
- 50. (a) -270°
- (b) 144°



Determine 2 coterminal angles (one pos. + one neg.) for each angle. Give your answer in degrees, 39) a)

41) a)
$$0 = 240^{\circ}$$
 $360^{\circ} + 240^{\circ} = 600^{\circ}$
 $-360^{\circ} + 240^{\circ} = -120^{\circ}$
b) $0 = -180^{\circ}$ $360^{\circ} + -180^{\circ} = 180^{\circ}$
 $-360^{\circ} + -180^{\circ} = -540^{\circ}$

Find (if possible) the complement and supplement of each angle.

Two positive angles α and β are complementary (complements of each other) if their sum is $\pi/2$. Two positive angles are supplementary (supplements of each other) if their sum is π . See Figure 4.12.

43) a) 18° Complement =
$$90^{\circ}-18^{\circ} \neq 72^{\circ}$$

Supplement = $180^{\circ}-18^{\circ} = 162^{\circ}$
b) 115° Complement = none 115° is greater than 90°.
Supplement = $180^{\circ}-115^{\circ} = 65^{\circ}$