Obj: To create a unit circle with degree and radian measure and determine the measure of special angles
Hwk: Radian Measure worksheet
Read and take notes on Section 4.1
4.1 PA and Quarter 1 Test is coming ...

Do Now:

1. Get supplies:

1 red, brown, blue, green COLORED PENCILS
1 piece of green yarn
1 ruler
1 protractor
1 circle wksht w/ circle cut out
2. Pair up! BRAINSTORM! Name all the mathematical facts you know about circles

- Circle - all points a fixed distance from center
- Radius - distance from center
- Diameter: distance through center across circle
- Unit of measure: degrees
- Number of degrees in circle $=360^{\circ}$
- Circumference $=$ perimeter $=2 \pi r$
- Area $=\pi r^{2}$
- Equation of circle: $(x-h)^{2}+(y-k)^{2}=r^{2}$
- Infinitely symmetrical
- All circles are similar

Trigonometry: the study of triangles (3 sided figures) including angles and sides. First, we need to talk about how to MEASURE these angles and sides.

Unit circle-yarn activity:

1. Hold your circle so they form $x-y$ axes. This represents a UNIT CIRCLE - a circle whose radius is ONE.
2. What is the perimeter (aka circumference) of this circle?

- Since the radius is one, that means the circumference of the circle is $2 \pi r=2 \pi(1)=2 \pi$.

3. Fold circle into fourths (on thin lines). How big is each angle? 90°. Open. Use brown pencil \& ruler to make these " $x \& y$ "axes.
4. Starting at the positive x-axis, mark it 0°. Using the pipe cleaner as a guide, and starting at 0°, measure the length of one radius on the outside of the circle. Mark this! Continue marking off radii until you go around the perimeter/circumference of the circle. How long is the circle (in terms of radii)? 6+ radii Does this make sense with what you already know?
*Since perim. = circumference, $6+$ markings $=2 \pi$
5. On circle, mark off $0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}, 360^{\circ}$
6. In brown, mark off and label π and 2π on your circle. Where is π located? Does it make sense with what you know about π ? $\pi \approx 3.14$ (a little more than 3 units/radii)
7. What is the degree equivalent of π ? $180^{\circ}=\pi$. Mark this on your circle.
8. We already marked off π and 2π. What if we want to cut our circle into FOURTHS. How much would we have now? $\frac{\pi}{2}$ and $\frac{3 \pi}{2}$. Label axes on circle in radians. What is the degree equivalent? $90^{\circ}=\frac{\pi}{2} ; 270^{\circ}=\frac{3 \pi}{2}$
9. Fold circle into EIGHTHS (on thin line). How big is each angle? 45° Open. Using your protractor, mark off each angle and its measure in red. Then label circle with $\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}$, etc.
10. Fold circle into SIXTHS (on thin line). How big is each angle? 60° Open. Using your protractor, mark off each angle and its measure in blue. Label your new angles $\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
11. Lastly, we want to divide the circle into TWELVES (remaining thin lines). How big is each angle? 30° Using your protractor, mark off each angle and its measure in green. Label the angles $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$

Show students Radian Measure ditto.
How does this relate to circles, degrees, pi, etc? What are the radian/degree equiv. of special $\angle s$?

