\qquad
Answers should be exact (and done without a calculator) on all problems marked with an *. When rounding, sides should be rounded to the nearest hundredth and ratios should have 4 decimal places.
*1. Determine the quadrant in which the terminal side of the angle lies:
a) $\theta=\frac{6 \pi}{5}$
b) $\theta=395^{\circ}$
c) $\theta=-2$
*2. Find one positive and one negative coterminal angle for
a) $\theta=\frac{11 \pi}{4}$
b) $\theta=-423^{\circ}$
3. Convert 2.5 radians to degree measure.
*4. Convert 330° to radian measure (in terms of π)
5. Convert to DD (degree decimal form): $-13^{\circ} 42^{\prime} 15^{\prime \prime}$ 6. Convert 12.4762° to DMS form.
*7. The central angle θ of a circle with radius 9 inches subtends an arc of 20 inches. Find θ.
8. A circle of radius r has a central angle of 15° which subtends(cuts) an arc of 23 inches. Find r.
*9. Find the point (x, y) on the unit circle that corresponds to the real number:
a) $t=\frac{3 \pi}{2}$
b) $t=\frac{4 \pi}{3}$
*10. Find the values of the 6 trigonometric functions/ratios (if defined) for
a) $t=-\frac{5 \pi}{6}$
b) $t=5 \pi$
11. Evaluate: a) $\sin (-4.1)$
b) $\sec (-1.42)$
c) $\csc 14^{\circ}$
d) $\cot (1.14)$
*12. Evaluate $\cot \frac{\pi}{6}$
13. Find the value of x in each of the triangles shown:
*a)

b)

14. The angle of depression from the top of a building to the base of a statue 48 feet from the base of the building is 72°. Determine the height of the building.
15. Given that θ is acute and $\cos \theta=\frac{5}{6}$, find
a) $\sec \theta$
b) $\sin \left(90^{\circ}-\theta\right)$
c) $\tan \theta$
*16. Determine the quadrant in which θ lies if $\tan \theta<0$ and $\cos \theta<0$.
*17. Given $\sin \theta=-\frac{1}{5}$ and $\tan \theta<0$, find $\cos \theta$.
18. Find the reference angle for
a) $\theta=305^{\circ}$
b) $\theta=\frac{7 \pi}{3}$
*19. Find the exact value of $\cot \left(-150^{\circ}\right)$
*20. Find two values of $\theta(0 \leq \theta<2 \pi)$ such that $\cos \theta=-\frac{\sqrt{2}}{2}$
*21. Find two values of $\theta\left(0^{\circ} \leq \theta<360^{\circ}\right)$ where $\cot \theta=\sqrt{3}$
*22. Given that $\sin \theta=-\frac{4}{7}$ and $\frac{3 \pi}{2} \leq \theta<2 \pi$, find $\sec \theta$.

