Name_

Answers should be *exact* (and done *without a calculator*) on all problems marked with an *. When rounding, sides should be rounded to the nearest hundredth and ratios should have 4 decimal places.

*1. Determine the quadrant in which the terminal side of the angle lies:

a)
$$\theta = \frac{6\pi}{5}$$
 b) $\theta = 395^{\circ}$ c) $\theta = -2$

*2. Find one positive and one negative coterminal angle for a) $\theta = \frac{11\pi}{4}$ b) $\theta = -423^{\circ}$

- 3. Convert 2.5 radians to degree measure. *4. Convert 330° to radian measure (in terms of π)
- 5. Convert to DD (degree decimal form): -13°42'15" 6. Convert 12.4762° to DMS form.
- *7. The central angle θ of a circle with radius 9 inches subtends an arc of 20 inches. Find θ .
- 8. A circle of radius r has a central angle of 15° which subtends(cuts) an arc of 23 inches. Find r.
- *9. Find the point (x, y) on the unit circle that corresponds to the real number:

a)
$$t = \frac{3\pi}{2}$$
 b) $t = \frac{4\pi}{3}$

*10. Find the values of the 6 trigonometric functions/ratios (if defined) for

a)
$$t = -\frac{5\pi}{6}$$
 b) $t = 5\pi$

11. Evaluate: a) sin(-4.1) b) sec(-1.42) c) $csc14^{\circ}$ d) cot(1.14)

*12. Evaluate $\cot \frac{\pi}{6}$

13. Find the value of *x* in each of the triangles shown:

- 14. The angle of depression from the top of a building to the base of a statue 48 feet from the base of the building is 72°. Determine the height of the building.
- 15. Given that θ is acute and $\cos \theta = \frac{5}{6}$, find a) $\sec \theta$ b) $\sin(90^\circ \theta)$ c) $\tan \theta$
- *16. Determine the quadrant in which θ lies if $\tan \theta < 0$ and $\cos \theta < 0$.
- *17. Given $\sin \theta = -\frac{1}{5}$ and $\tan \theta < 0$, find $\cos \theta$.
- 18. Find the reference angle for a) $\theta = 305^{\circ}$ b) $\theta = \frac{7\pi}{3}$
- *19. Find the exact value of $\cot(-150^\circ)$
- *20. Find two values of θ ($0 \le \theta < 2\pi$) such that $\cos \theta = -\frac{\sqrt{2}}{2}$
- *21. Find two values of θ ($0^{\circ} \le \theta < 360^{\circ}$) where $\cot \theta = \sqrt{3}$

*22. Given that $\sin \theta = -\frac{4}{7}$ and $\frac{3\pi}{2} \le \theta < 2\pi$, find $\sec \theta$.