Tuesday, September 25, 2018 6:37 PM

KEY Precalc

1.5B Analyzing Graphs of Functions

Obj: To determine increasing and decreasing intervals of functions, relative min/max, and identify even/odd functions

Hwk: 1.5B; #31 - 35 odd, 51, 53, 57, 71, 73, 75; Check answers! 1.4 - 1.5 Quiz on FRI 9/28

Graphing calculators necessary

Do Now:

Get into groups! Do "Functions Day 2 Do Now" ditto

Recap:

In the last lesson, we examined a graph to determine:

Domain: leftmost → rightmost x values

Range: bottommost → topmost y values

Zeros of function: where the graph crosses the x-axis, aka x-intercepts, solutions, roots

Today we are examining graphs to determine more:

A function f is increasing if x₂ > x₁ and f(x₂) > f(x₁)
 i.e. y values get "larger" as you move from left → right

- A function f is decreasing if x₂ > x₁ and f(x₂) < f(x₁)
 i.e. y values get "smaller" as you move from left → right
- A function f is constant on an interval if, for any x_1 and x_2 and $f(x_1) = f(x_2)$

$$f(1)$$
 $f(2)$
 $f(2) = f(1)$

i.e. the y values don't change as you move from left -> right

Ex. 1) Using the graph, determine the INTERVALS, if any, where the graph is

- a) increasing $(-\omega, -3) \cup (3, \omega)$
- b) decreasing (-3,3)
- c) constant

* HINT ! COVER UP ARROWS!

*NOTE: no interval includes turning point (pt where graph changes direction). It is not increasing/decreasing at that point.

* Always give intervals in terms of x! (moving left >rt across graph)

Ex. 2) Using the graph, determine the INTERVALS, if any, where the graph is

- a) increasing (-0,0)
- b) decreasing (2,00)
- c) constant (0,2)

Odd and Even Functions:

- Even functions: for each x in its domain, f(-x) = f(x)
 - o symmetric wrt y-axis
 - \circ If (x, y), then (-x, y) also

Test

- Odd functions: for each x in its domain, f(-x) = -f(x)
 - o symmetric wrt the origin
 - \circ If (x, y), then (-x, -y) also

Ex. 3) Determine whether $f(x) = x^4 - |x|$ is even, odd, or neither

Test; FIND
$$f(-x) = (-x)^4 - |-x|$$

= $x^4 - |x|$
= $f(x)$

. Symmetric about 4-Axis

Ex. 4) Determine whether
$$g(x) = -\frac{x}{x^2 + 1}$$
 is even, odd, or neither

Test! Find 9 (-x)

$$g(-x) = -\frac{(-x)}{(-x)^2 + 1} = \frac{x}{x^2 + 1} = -g(x)$$

Ex. 5) Use the graph to determine if each is even, odd, or neither

The turning point can also be a relative minimum or a relative maximum.

- f(a) is a relative minimum if the pt has the <u>lowest</u> y value in interval
- f(a) is a relative maximum if the pt has the <u>highest</u> y value in interval

