Sunday, October 14, 2018 5:23 PM

KEY

Precalculus

1.4A: Relations & Functions

Obj: To det. if a relation is a function; to apply function notation Hwk:

- 1.4A #1 9 odd, 10 13 all, 17, 29, 33; check answers!!
- Summer Assignment due tomorrow
- SA/Prerequisite Skills Performance Assessment tomorrow

Do Now:

- ① Have out "Even Circled Problems" (stapled, name on top)
- ② Complete "Interval notation" half sheet (both sides)

PRECALCULUS		Section 1.4: FUNCTIONS (day 1) - DO NOW		PRECALCULUS			
Exan	nples:				Fill in the missing inequality,		
	Inequality	Graph	Interval notation		Inequality		
1.	x≤3	77411311	(-∞,3]	1.	x≤-5	4	
2.	x>2	33381835	(2,∞)	2.	34 X4 S	- 1,	
3.	-2 ≤ x < 3	394811913	[-2,3)	3.	4 X41		
4.	$x < -1$ or $x \ge 2$	329019545	(-∞,-1)∪[2,∞)	4.	x>4 or	- 1	

		ality, graph, or interval notation for each question below.				
_	Inequality	Graph	Interval notation			
1.	x≤-5	\$13 435311111111	(-P,-5]			
2.	34 X4 5	34349334111194	(-3,5)			
3.	14 X41	343434 9 694444	Ľ-1,1)			
4.	x>4 or	3 \$ 3 4 5 3 4 6 1 4 5 7 5 7	(-0)-2] U			

Calculus is the study of things that change; real-life things that change are modeled by *functions*. In order to prepare you for studying calculus, we have *precalculus* – basically the study of many different types of functions (for example, polynomial, exponential, logarithmic, and trigonometric functions) and other related (necessary) topics.

Relation: a set of ordered pairs, sometimes related by a rule Ex. 1) $\{(1, -2), (2, 1)\}$ Ex. 2) y = 2x

Function: a relation where, for every input value there corresponds exactly one output value.

Domain (D): set of inputs Range (R): set of outputs

Characteristics:

- Each element in **D** must be matched with <u>one and only one</u> element in **R**.
 - NOTE: if an element in **D** does NOT have a partner, then it is NOT a function
 - if an element in **D** has TWO OR MORE partners, then it is NOT a function
- Some elements in R might not be paired with an element in D.

This is TEMPERATURE at a given TIME – *we <u>can't</u> have 2 dif. *temps* at the same *time* BUT we <u>can</u> have 2 dif. *times* with the same *temp!*

Ways to represent functions:

- 1. verbally: student ID # and grade student ID # and phone #
- 2. <u>numerically</u>:

Ex. 4a)
$$\{(1, -2), (1, 2)\}$$

* NO, I has 2 outputs

Functions? If no, JUSTIFY!

graphically: ordered pairs (x, y) plotted on a coordinate plane.

* if a vertical line can be drawn thru 2 or more pts, then it is NOT a *function!* ←vertical line test

algebraically - as an equation in two variables

Ex. 5) Det. if y is a function of f.

(i.e. solve for y then see if the result is a function)

a.
$$x^2 + y = 1$$

 $y = x^2 + 1$

yes lanswer

Function Notation: y = f(x)

b.
$$-x + y^2 = 1$$

14) = 1X+1 y = + VX+1

b.
$$-x + y^2 = 1$$
 c. $x^2 + y^2 = 8$
 $y^2 = \sqrt{x+1}$
 $y = \sqrt{x+1}$
 $y = \pm \sqrt{x+1}$
 $y = \pm \sqrt{x+1}$
 $y = \pm \sqrt{x+1}$
 $y = \pm \sqrt{-x^2+8}$

• f is the name of the function

- y is the dependent variable
- x is the independent variable
- f(x) is the value of the function at x
 - ➤ Where have you seen y as dep. var. & x as ind. var.?
 - If is the name of the function, NOT another variable.

Ex. 6) Determine which of the following represent functions. Identify the Domain and Range of each function.

a.
$$x^{2}+y-9=7$$

b. $-x^{2}+y+x=-2$

c. $2x+3y=15$
 $y=x^{2}-x-2$
 $y=x^{2}-x-2$
 $y=-\frac{2}{3}x+5$

d. $x^{2}+y^{2}=16$
 $y=-\frac{2}{3}x+5$

e. $y^{2}-12x=1$
 $y=-\frac{2}{3}x+1$
 $y=-\frac{2}{3}x+1$